Multi-Pass Streaming Algorithms for Monotone Submodular Function Maximization

نویسندگان

چکیده

We consider maximizing a monotone submodular function under cardinality constraint or knapsack in the streaming setting. In particular, elements arrive sequentially and at any point of time, algorithm has access to only small fraction data stored primary memory. propose following algorithms taking O(ε− 1) passes: (1) (1 − e− 1 ε)-approximation for cardinality-constrained problem, (2) (0.5 knapsack-constrained problem. Both our run deterministically O∗(n) using O∗(K) space, where n is size ground set K knapsack. Here term O∗ hides polynomial $\log K$ ε− 1. Our can also be used as fast approximation algorithms. takes $O(n\varepsilon ^{-1} \log (\varepsilon ^{-1}\log K) )$ improving on Badanidiyuru Vondrák that $O(n \varepsilon time.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-Pass Streaming Algorithms for Monotone Submodular Function Maximization

We consider maximizing a monotone submodular function under a cardinality constraint or a knapsack constraint in the streaming setting. In particular, the elements arrive sequentially and at any point of time, the algorithm has access to only a small fraction of the data stored in primary memory. We propose the following streaming algorithms taking O(ε) passes: 1. a (1 − e − ε)-approximation al...

متن کامل

Streaming Algorithms for Submodular Function Maximization

We consider the problem of maximizing a nonnegative submodular set function f : 2N → R+ subject to a p-matchoid constraint in the single-pass streaming setting. Previous work in this context has considered streaming algorithms for modular functions and monotone submodular functions. The main result is for submodular functions that are non-monotone. We describe deterministic and randomized algor...

متن کامل

Robust Monotone Submodular Function Maximization

Instances of monotone submodular function maximization with cardinality constraint occur often in practical applications. One example is feature selection in machine learning, where in many models, adding a new feature to an existing set of features always improves the modeling power (monotonicity) and the marginal benefit of adding a new feature decreases as we consider larger sets (submodular...

متن کامل

Efficient Streaming Algorithms for Submodular Maximization with Multi-Knapsack Constraints

Submodular maximization (SM) has become a silver bullet for a broad class of applications such as influence maximization, data summarization, top-k representative queries, and recommendations. In this paper, we study the SM problem in data streams. Most existing algorithms for streaming SM only support the append-only model with cardinality constraints, which cannot meet the requirements of rea...

متن کامل

Non-Monotone DR-Submodular Function Maximization

We consider non-monotone DR-submodular function maximization, where DR-submodularity (diminishing return submodularity) is an extension of submodularity for functions over the integer lattice based on the concept of the diminishing return property. Maximizing non-monotone DRsubmodular functions has many applications in machine learning that cannot be captured by submodular set functions. In thi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Theory of computing systems

سال: 2021

ISSN: ['1432-4350', '1433-0490']

DOI: https://doi.org/10.1007/s00224-021-10065-6